

Reframing Climate Change:

How recent emission trends & the latest science change the debate

Kevin Anderso

Tyndall Cent Universities of Manchester & East Angl

Alice Bow

Sustainable Consumption Institute (SC University of Manchest

Talk outline

- 1) Dangerous climate change post-Copenhagen
- 2) Cumulative emissions a new chronology
- 3) Misplaced optimism ignoring the bean counters
- 4) Global GHG pathways impossible challenges?
- 5) UK & Global response to the challenge
- 6) Implications for historic building a few thoughts

What is dangerous climate change?

UK & EU define this as 2°C

3ut:

- ... 2°C impacts at the worst end of the range
- ... ocean acidification devastating even at 400-450ppmv CO₂
- ... failure to mitigate leaves 2°C stabilisation highly unlikely

Emission-reduction targets

UK, EU & Global - long term reduction targets

UK's 80% reduction in CO₂e by 2050 EU 60%-80% " 2050 Bali 50% 2050

CO₂ stays in atmosphere for 100+ years,

Long-term targets are dangerously misleading

Put bluntly ...

2050 reduction unrelated to avoiding dangerous climate change (2°C)

cumulative emissions that matter (i.e. carbon budget)

this fundamentally rewrites the chronology of climate change

- from long term gradual reductions
- to urgent & radical reductions

How do global temperatures

link to

global and national carbon budgets

& from there to

emission-reduction pathways?

Illustrative pathway for a CO₂e budget

How does this 'scientifically-credible' way of thinking alter the challenge we face?

Tyndall's emission scenarios (2000-2100 CO₂e)

To consider:

- 1. CO₂ emissions from landuse (deforestion)
- 2. Non-CO₂ GHGs (principally **agriculture**)

What emission space remains for:

3. CO₂ emissions from energy?

Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

- land-use & forestry emission scenarios (deforestation
- non-CO₂ greenhouse gas emissions (agriculture)

Global CO₂e emissions peaks of 2015/20/25?

factoring in...

the latest emissions data

what is the scale of the global 'problem' we now face?

It's getting worse!

Global CO₂ emission trends?

... appears we're denying its happening

latest global **CO**₂**e** emission trends?

- ~ 2.4% p.a. since 2000
- ~ Stern assumed 0.95% p.a.

(global peak by 2015)

What does:

- this failure to reduce emissions
- the latest science on cumulative emissions

Say about a 2°C future?

What greenhouse gas emission pathways for 2°C

Assume

- 2015/20/25 global peak in emissions
- Highly optimistic deforestation & food emission reductions
- ~10% to 60% chance of exceeding 2°C

For ~2°C we can emit:

~ 1400 to 2200 GtCO₂e between 2000-2100 (i.e. the global carbon budget)

Total greenhouse gas emission pathways

(Anderson & Bows. 2008 Philosophical Transactions A of the Royal Society. 366. pp.3863-3882)

Reasonable/good chance of 2°C & with a 2020 peak

... and for energy emissions?

13 of 18 scenarios 'impossible'

Even then total decarbonisation by ~2035-45 necessary

What annual global emission reductions

from energy for 3°C and 4°C

Assume

- 2020 global peak in emissions
- Highly optimistic deforestation & food emission reductions
- ~ 50% chance of exceeding 3°C & 4°C

For 3°C & emissions peaking by 2020:

... 9% annual reductions in CO₂ from energy

For 4°C & emissions peaking by 2020:

... 3.5% annual reductions in CO₂ from energy

What are the precedents for such reductions?

Annual reductions of greater than 1% p.a. have only

"been associated with economic recession or upheaval"

Stern 200

 UK gas & French 40x nuclear ~1% p.a. reductions (ex. aviation & shipping)

Collapse Soviet Union economy ~5% p.a. reductions

Need to reframe climate change drivers:

For mitigation

2°C should remain the driver of policy

For adaptation

4°C should become the driver of policy

Urgent need for reality check

If economic growth not possible with 6% p.a carbon reduction

... then

need planned economic 'contraction' to stabilise even at ~4°C

Urgent need for reality check

- Focus on win-win opportunities is misplaced
- Significant 'pain' & many losers
- 4°C is not 'business as usual'
 - but all orthodox reduction in place & successful
- What does this mean for adaptation?

Urgent need for reality check

Both mitigation & adaptation rates are:

- beyond what we have been prepared to countenance
- without historical precedent

We've entered new and unchartered territory

How are the UK and International Community fairing against this challenge?

UK Low Carbon Transition Plan (2009:5)

"To avoid the most dangerous impacts of climate change, average global temperatures must rise no more than 2°C, and that means global emissions must start falling before 2020 and then fall to at least 50% below 1990 levels by 2050."

The UK is clearly demonstrating a strong international lead.

UK position based on CCC report

CCC claim their 'cumulative' values have ~60% chance of exceeding 2°C

Can this be reconciled with "must' rise no more than 2°C"?

Impact of probabilities on UK reduction rates

Prob of	UK Annual
Exceeding 2°C	Reduction
56 - 63%	3%
15 - 50%	5%
5 - 30%	9%

What are current UK emission trends?

- At best 30-80 chance of exceeding 2°C
- Assumes very optimistic Global peak in 2016
- Large buyout from poor countries (CCC 17% & 27%)
- Partial inclusion of Shipping & Aviation
- 'Real' emissions up ~18% since 1990

- •Waxman-Markey Bill no US reductions necessary before 2017 & 4% by 2020
- Japan 25% by 2020
- Russia & NZ no targets
- China & India demand 'big' reductions from Annex 1 if they're to engage
- LDC's suggest historical emissions be considered if they're to significantly engage

Implications for historic buildings

... final thoughts

MITIGATION

- Where appropriate improve thermal characteristics of structure
- Heat/cool only where necessary not just for comfort
- Install ground / air source heat pumps
- Don't be afraid of local renewables they can be removed (unlike climate change!)
- Minimise water consumption (has high energy content)
- •THE SHOP! heating/cooling; embedded energy of merchandise; broader sustainability issues ...?
- Strongly encourage low-carbon transport
 public-transport concessions, parking preferences

ADAPTATION

- Despite political rhetoric 4°C global mean is likely (2070-2100)
- Regional variations could lead to much higher temperatures
- Significant change in rain fall patterns and possibly quantity
- Unexpected movement of 'pests'
- Identify synergies with mitigation

... ultimately ...

"at every level the greatest obstacle to transforming the world is that we lack the clarity and imagination to conceive that it could be different."

Roberto Unger

Reframing Climate Change: How recent ends ion trends & the latest science change the debate

Kevin Anderson & Alice Bows